
 CARIBBEAN STUD POKER

This project contains six classes and fifty-three .gif files that together create a program to play the casino game Caribbean Stud Poker. The fifty-three .gif files are for the fifty-two cards in the deck plus the back of the card. They were created by scanning a deck into the computer and then editing each card to desired size via Microsoft Photo Editor. The files are named by the rank of the card (two, three, …, ten, J, Q, K, A) followed by the suit (C, D, H, S) as in threeD.gif, AS.gif, etc. There is a Card class that contains the data (suit, rank) and operations (get suit, get rank, get the corresponding .gif file) on one card, , a Deck class that contains the data (all the cards) and operations (shuffle, deal) on a deck of cards, a Hand class that contains the operations on a hand (add a card, sort the hand by rank, rank the hand by strength, compare hands by rank), a Bankroll class that contains the data (money player has) and the operations on the money (add winnings, deduct losses, set the amount, retrieve the amount), a Payoffs class that contains the operations on the rules (payoff rules and qualify rule), a RulesFrame class that creates a pop-up of the rules when the appropriate button is clicked, and a Gui class that handles all the graphical interface operations (clicking buttons, closing windows, closing dialog boxes, displaying money fields and displaying images).

The Card class

A Card object has two private data variables - suit (of type char) and rank (of type int). The suit variable will take on the values ‘C’, ‘D’, ‘H’, or ‘S’ to indicate the suit of the card. The rank variable will take on the values 2 through 14 where 11, 12, 13, and 14 represent J, Q, K, and A. Fourteen, rather than one, was chosen to represent the ace to make sorting and comparing easier.

There are two constructors - a default constructor that initializes the rank to 0 and the suit to space and a two argument constructor takes a char and an int as parameters and initializes the suit and rank to those values.

There are two accessor methods - public char getSuit() and public int getRank(). As their names suggest, the first returns the suit of the card and the second returns the rank of the card.

Finally, there is a method public static String cardToPic(char s, int r) that accepts the suit and rank of a card as parameters, and returns a String that contains the name of the .gif file containing the image of that card. It is static because it will be called using the class name rather than using a class object. The String object is formed by concatenating the word for the rank of the card to an empty string (done in a switch-case statement) and then concatenating the suit and the .gif extension to the string.

String str ‘ “”;

switch (r) //r is the rank of the card from the parameter

 {

 case 2 : str = “two”;

 break;

 .

 .

 .

 case 14 : str = “A”;

 }

str = str + s + “.gif”; //s is the suit from the parameter

return str;

The Deck class

A Deck object has one private data member named deck. deck is a two dimensional array of boolean with four rows and fifteen columns. The rows (0, 1, 2, 3) represent the suits (C, D, H, S). The columns represent the ranks (2..14). Columns 0 and 1 are not used. The default constructor initializes each component of the array to false - indicating that the card represented by that component has not been dealt.
Cards will be “dealt” via a call to the method public Card dealCard() which randomly chooses a row from 0 to 3 and a column from 2 to 14. If the component of deck is true, then that card has already been dealt. Then, a new row and a new column are randomly generated until an undealt card is found. If that component of deck is false, then that card has not been dealt. The row number is changed to a suit (‘C’, ‘D’, ‘H’, or ‘S’) and the column number is the rank. A new Card object is created through a call to the Card constructor with the suit and rank as parameters. The corresponding component of deck is assigned true (indicating that the card has been dealt) and the Card object is returned from the method.

The method public void resetDeck() sets all the components of deck to false, thereby shuffling the deck.

The method public void dealHand(Hand hand, int flag) takes a Hand object and an integer as parameters. The flag is used for debugging purposes. When creating the program, specific hands may be dealt to the house and player to test the ranking and tie breaking methods of the Hand class. If testing is used, the dealHand method will call the fixedHand method in which specific cards can be assigned to each hand. When the program is complete, random hands will be dealt by calling the randomHands method of the Hand class. The appropriate call is commented out depending on what is needed. A Hand object is an array of five Card objects. Five cards are randomly created through a call to dealCard() and each card is added to the Hand by calling the Hand method public void addCard(card).

The Payoffs class

The Payoffs class has two private integer data members: ante for the amount put up, and bet for the amount bet (in Caribbean Stud Poker the bet is automatically double the ante). These data members are initialized to zero in the constructor.

The method public int payout(int rank, int bet) takes two parameters - an integer for the rank of the hand, and an integer for the amount bet. The payoff in Caribbean Stud depends on the strength of the hand. If the player beats the house, the player is paid according to the following table:

Royal Flush:

100 - 1

Straight Flush

 50 - 1

Four of a Kind

 20 - 1

Full House

 7 - 1

Flush

 5 - 1

Straight

 4 - 1

Three of a Kind

 3 - 1

Two Pair

 2 - 1

One pair or less

 1 - 1

Example: a player antes $20 and wins with a straight. Since the bet is double the ante, the player bet $40. He gets paid his ante plus four times his bet (straight pays 4 - 1) for a total of $180 net gain. Of course he also takes back his ante and bet. So, he put up $60 and took back $240.

The payout method returns the net amount won.

The method public boolean qualify(Hand, hand) takes a Hand object as a parameter and returns true if the rank of the hand is greater than or equal to 1. The house automatically folds if it does not have a hand with at lease AK high.

The Hand class

The Hand class has three data members: a public Card object, hand, that is an array; and two private members for rank and count (for number of cards in hand).

There is a default constructor that creates a new hand (and array of 5 Cards), initializes the rank to 0 and the count to 0.

The method public void sortHand() sorts the hand by rank. It uses a simple selection sort.

The method public int rankHand() determines what the hand contains (i.e. pair, flush, three of a kind, etc) and ranks it accordingly (10 for a royal straight flush, 0 for anything less than ace-king high). The rank of the hand is returned from the method. The hand has been sorted prior to calling the rankHand() method. Each possible hand is assigned a boolean value (initially false). The tests for what a hand contains are as follows:

Flush: tests to see if all the cards have the same suit. If so, flush is assigned true. A rank of 6 will be returned.

Straight: tests to see if the rank of each card is one more than the rank of the previous card. This works for all straights except A2345 (since A has a rank of 14). This case is tested separately. straight will be assigned true. A rank of 5 will be returned.

Royal straight: tests to see if ranks are 10, 11, 12, 13, & 14. royalstraight will be assigned true. A rank of 5 will be returned. Note: both a straight and a royal straight will have a rank of 5 because they are both straights. The superiority of one hand over the other will be decided in method public static int breakTie(Hand player, Hand house) which is used when two hands have the same rank.

Straight flush: if flush and straight. straight flush will be assigned true. Rank of 9 will be returned

Royal straight flush: if royal straight and flush. royalstraightflush will be assigned true. Rank of 10 will be returned

Four of a kind : Since the hand is sorted, four of a kind can occur only as axxxx or xxxxx. four will be assigned true. Rank of 8 will be returned.

Full house: Since the hand is sorted, a full house can occur only as xxxyy or yyxxx. Full will be assigned true. Rank of 7 will be returned.

Three of a kind: Since the hand is sorted, three of a kind can only occur as xxxab, axxxb, or abxxx, where a and b cannot be the same. three will be assigned true. Rank of 4 will be returned.

Two pair: Two pair can occur as xxyyz, xyyzz, or xxyzz. two will be assigned true. Rank of 3 will be returned.

One pair: One pair can occur as xxabc, axxbc, abxxc, or abcxx. pair will be assigned true. A rank of 2 will be returned.

Ace-king high: (this is important in the rules of Caribbean stud) A hand will contain AK high if the fourth and fifth cards are king and ace and the hand is none of the ones tested above. aceking will be assigned true. A rank of 1 will be returned.

If the hand contains a combination worse than AK high, a rank of 0 will be returned.

The method public static int breakTie(Hand, player, Hand house) takes two Hand parameters

representing the hands of the player and the house . If the player has the higher hand, a value of 1 is returned, if the house has the higher hand, a value of -1 is returned, and if both hands are the same, a value of 0 is returned. Example: If both hands have a rank of 10, then both player and house have a royal straight flush and therefore tie. Zero is returned. It is static because it is called using the class name rather than with a class object.

If both player and house have a straight or a straight flush, we first need to consider if both players have an ace. If so, we need to check if one has A2345 and the other has 10JQKA. Since the hands are sorted by rank of the cards, A2345 will be sorted as 2345A. Thus, we need only check the fourth card in each hand to see which is higher. (either K is higher than 5 or both have a K or both have a 5).

If only one player has an ace, then if that player has an ace high straight he wins (his straight is automatically higher than all others) otherwise he loses (his straight is the smallest possible straight).

If neither player has an ace, then we need only check who has the highest card (actually in any corresponding position).

If both players have four of a kind, then either their hands contain xxxxa or axxxx. So we only need to check the 2nd, 3rd, or 4th card to see whose is higher (they can‘t be the same!). The program checks the 2nd.

 If both players have three of a kind, then their hands contain xxxab, axxxb, or abxxx. We only need to check the middle card to see whose three is higher (they can’t be the same!)

If both players have a flush, we need to check the highest (5th) card for a winner. If the 5th cards are the same, we need to check the 4th cards and so on down until a winner is found.

If both hands have two pair, then their hand contain xxyzz, xxyyz, or xyyzz. The fourth card in each case is one of the cards in the higher pair. So, we first need to check to see which player has the higher 4th card. If they are the same, then we need to check the other pair. In each case, the 2nd card is one of the cards in the lower pair. So we need to check which player has the higher 2nd card. If they are the same, then both players have the same two pair and we need to check the single card. To do that, we need to isolate which position contains the single card in each hand and then compare the cards in those positions.

If both hands contain one pair, then we must find the position of the first card of that pair and compare the player‘s card in that position with the house‘s card in that position. If they are the same, then both have the same pair and we must compare the ranks of the other cards starting with the highest. To do this, the ranks of the other cards for each player are stored in separate arrays and than are compared until one has a higher rank.

If both hands contain AK high, then the other three cards need to be compared until next highest is found.

The Bankroll class

This class keeps track of the player’s money. There is one private data member bankroll. The default constructor initializes the bankroll to 0. The one argument constructor sets the bankroll equal to the value of the parameter.

The mutator method public void setBankroll (int money) sets the bankroll to the value of the parameter.

The mutator method public void addWinnings(int win) adds the winnings to the bankroll.
The mutator method public void deductLoss(int loss) deducts losses from the bankroll. This is not used.
The accessor method public int getBankroll() returns the value of bankroll.

The RulesFrame class

This class extends JFrame and produces a window on the screen that explains the rules of Caribbean Stud to the player when the player clicks on the button labeled RULES.

The Gui class

This class produces the poker table on the screen and handles all the interaction between the player and the game. There are seven buttons on the screen. Their functions are to buy chips, make an ante, deal the cards, produce the rules, bet (i.e. play vs. fold), fold, and cashout (quit the game). The appropriate names are on each button.

There are three JTextFields on the screen - one for the bankroll, one for the ante, and one for the bet.

There are six Jlabels - three with text for ante, bankroll and bet, one with an image for the deck of cards, one for the house’s hand (an array of images), and one for the player’s hand (an array of images).

 The Gui class manipulates five objects - a Bankroll, a Deck, two Hands, and a Rules. After all the buttons, labels, and text fields are added to the content pane in the appropriate locations, the buttons are registered with the action listener.

The main method initializes a new Gui object and displays it on the screen.

The ButtonHandler class implements ActionListner. The actionPerformed method of this class responds to the clicking of the buttons.

Each time the BUY button is clicked, the public void buyChips() method of the Gui class is called and in it $20 is added to the bankroll by calling the setBankroll method of the Bankroll class. The parameter is the current value of the bankroll (obtained by calling the getBankroll() method of the Bankroll class) plus $20.

Each time the ANTE button is clicked, the public void processAnte() method of the Gui class is called and in it the player’s ante amount is incremented by $5 . The amount that must be bet if the player doesn’t fold is also kept track of, as well as the amount left in the player‘s bankroll. If the amount in the player’s bankroll is not sufficient to cover the bet corresponding to the ante, a message dialog pops up telling the player that he does not have enough money to cover the bet and allows the player to play with the previous ante. Example: suppose the player has $20 in his bankroll. He clicks the ante button and an ante of $5 is displayed. Since the ante is $5, he needs to have $10 to bet. He does because after the ante, his bankroll is $15. Now, if he clicks the ante button again (indicating a $10 ante), he will get a message that he does not have enough money to place that ante. That’s because a $10 ante requires a $20 bet, but after a $10 ante, he only has $15 left in his bankroll. The program will allow him to play with the original ante, or allow him to buy more chips. The bankroll is updated accordingly.

When the DEAL button is clicked, the public void dealHands() method is called. The program checks to see if an ante has been made. If not, nothing happens. Also, if the deal button is clicked twice, the second click will cause no action. If the ante has been made, then the method is called. dealHands() instantiates two Hand objects - one for the player and one for the house, and a Deck object. Five Jlabels for the player’s cards and five Jlabels for the house’s cards are added to the content pane in specified locations.

for(int i = 0; i < 5; I++)

 {

 player Picture[i] = new JLabel();

 playerPicture[I].setBounds(d.width/4 + 115 * i, 310, 102, 138)

 contentPane.add(playerPicture[i]);

 }

 The player’s and the house’s hands are then dealt (deck.dealHand(player)), the player’s hand is sorted, and the .gif file for each card is then put into the labels:

for(int k = 0; k < 5; k++)

 {

 card suit = player.hand[k].getSuit();

 cardrank = player.hand[k].getRank();

 cardPicFile = Card.cardToPic(card suit, cardrank);

 playerPicture[k].setIcon(new ImageIcon(cardPicFile));

 }

The player’s hand is completely displayed (sorted), but only the last card of the house’s hand is displayed. The house hand is not sorted. The other four cards are displayed face down. There is a provision to “deal” specific hands to test the accuracy of the program. The second parameter of the dealHand method of the Deck class indicates if the hand is for the player (1) or the house (0). The dealHand method of the Deck class contains calls to two functions – one for random hands and one for fixed hands. Whichever is not wanted is commented out. Note, when the Deal button is clicked, the dealHands method of the Gui class is called. That in turn calls the dealHand method of the Deck class.

When the FOLD button is clicked, the public void processFold() method is called. The player is indicating that he cannot beat the dealer and therefore loses his ante. A message dialog pops up indicating that the house wins an amount equal to the ante. The house’s cards are not revealed (if the player folds, he hasn’t paid to see the house’s cards!). However, code is provided (needs to be uncommented) to show the house’s cards if desired. When the player clicks the OK button of the message, the cards are removed from the table via a call to the public void removeCardsFromTable() method of the Gui class.

When the RULES button is clicked, the public void displayRules() method is called. A pop up window (RulesFrame) explains the rules of the game. The window is closed by clicking the X on the frame.

When the CASHOUT button is clicked, the public void cashout() method is called. A message dialog pops up telling the player to bring his chips to the cashier and thanks him for playing. The ante, bet and bankroll are reset to 0.

When the BET button is clicked, the player is indicating that he thinks he can beat the house. The bet is displayed in the bet field and the bankroll is reduced by the amount of the bet. The house’s remaining four cards are turned over and the entire hand is displayed (this time in sorted order to make it easy for the player to view both hands quickly). The program then checks to see if the house “qualifies” (see qualify method of the Rules class). If the house doesn’t qualify, a message dialog pops up indicating such and stating that the player only wins an amount equal to his ante. There is no payoff on the bet. The bankroll is updated and the ante and bet fields are reset to 0 through a call to the public void initialize() method. That method also initializes boolean variables for whether a bet has been made, an ante has been made and a deal has happened. The program needs to know if an ante has been made so that clicking the DEAL button without having made an ante will do nothing. It needs to know if a deal has happened so that clicking the DEAL button a second time will have no effect. It needs to know if a bet has been made (i.e. the player stays) so that a second clinking of the BET button will have no effect.

If the house does qualify, then the ranks of the hands are compared. If the player has the higher hand, a dialog box indicated how much is won (gross - includes initial ante, bet and subsequent payoff). The bankroll is updated, the cards are removed from the table, and the initialize() method (explained above) is called. Similarly, if the house has the winning hand except the dialog box indicated that the house wins whatever the player had anted and bet.

If both hands have the same rank, then the breakTie(player, house) method of the Hand class is called. Appropriate dialog boxes are displayed based on the result of that call.

Finally, the paint() method produces a table of the payoffs in the upper left corner of the table.

Enhancements: One significant enhancement that could be made to this program is to have the cards move (flip over) from the deck to their positions on the table. This would give a more realistic representation of the deal. This is left to you to do as an exercise. (send me the code when finished!).

Another enhancement would be to have the words CARIBBEAN STUD POKER arcing through the center of the table. Again, send me the code when done.

A third enhancement would be to keep track of the players total losses when he needs to but additional chips.

A fourth enhancement would be to allow for a progressive jackpot like they have in casinos.

Arnie Kaupp

5 Charlotte Drive

Plymouth, MA 02360

Awk1@adelphia.net
BankRoll

GUI

Deck

Card

RulesFrame

Payoffs

Hand

