Personal Calendar Class

Presented by

Elizabeth Carter

Mario Correia

Larry Chiappetta

In completion of the Java Workshop for
High School Teachers
August 2003 and June 2004

Stonehill College

Overview: This is the teacher’s manual to the PersonalCalendar Class. This is a guide for the teacher to use to implement the PersonalCalendar class.

Abstract: The creation and maintenance of accurate calendars is an age-old activity. This unit provides the teacher with resources to introduce computer programming concepts while working on real-world date and calendar applications. The cumulative product is a GUI of a PersonalCalendar created by each student using Java. This unit provides a wide range of programming exercises for students to implement and culminates with a GUI of a PersonalCalendar Class which can be adapted to various levels of student abilities.

Objectives: Upon completion of this unit, the student will be able to:

· create an interactive GUI using Java

· demonstrate use of graphical objects:

frames, labels, panels, buttons, comboboxes, icons, menus

· demonstrate knowledge of calendar construction

· demonstrate use of basic programming concepts (if-else, loops, arrays, etc.)

· master certain calendar algorithms (leap year, doomsday)

· demonstrate use of the Java API’s by using the GregorianCalendar Class

Core Question: How do we make useful Java applications?

Background Information: Java GUI’s; the Java Calendar Class, and the Java GregorianCalendar class; various date and calendar algorithms; file I/O.

Materials: Java 2; handouts, worksheets, Internet access; real (paper) calendars, demonstration scheduling programs.

Activity: Time Required: at least 2 full weeks of class time for the culminating project of the actual GUI calendar, regular class time prior to that for discussion and implementation of calendar related algorithms and introductory programs. Additional class time for the Extension Activities and “Extra for Experts.”

Standards: Some of the High School Performance Standards being addressed:

M5 – problem solving for non-routine problems;

S4 - produces evidence of understanding the impact of

technological designs;

A3a - gathers information.

Extension Activities: Combo Box for different languages; change the range of years or how the range is presented; convert arrays to ArrayLists or to LinkedLists; set own calendar theme of pictures (sports cars, airplanes, horses, school events, etc.) – implement via menu or drop-down list; add more info to the date via an input box; write date info to a file; color a date as moused-over – or as a holiday; add in the algorithm for Easter, Vernal Equinox, etc.; calculate the Doomsday Algorithm; add students birthdays or special events; add a count down until (…. Graduation, Christmas, Vacation, etc.); add a how many days since or between.

Extra for Experts: File I/O for date information; allow user to add events; create a schedule (daily horarium); create a diary or electronic journal; post on line for the school’s calendar.

Additional Resources:

Doomsday algorithm

Date of Easter algorithm

Equinox algorithm

Leap Year Algorithm

Developed By:

Elizabeth Carter, Portsmouth High School, Portsmouth Rhode Island (401)-683-2124 Office Hours M-F: 2-3 pm. Email: ride2535@ride.ri.net

Larry Chiappetta, Moses Brown School, Providence, Rhode Island (401) 831-7350 ext. 180 Office Hours M-F: 2-3pm Email: lchiappetta@mosesbrown.org
Mario Correia, Barrington High School, Barrington, Rhode Island (401) 247- 3150 ext. 118 Office Hours M-F: 2-3pm Email: correiama@bpsmail.org

Suggested Activities:

There are a variety of ways to introduce the PersonalCalendar Class. To come to the final calendar project students will need to be able to work with basic computer science constructs (if-else, loops, arrays, etc.) as well as Java objects, GUI components and layout.

The assignment:

After the teacher demonstrates the sample program, teams of students (number of students per team as teacher desires) form to create their own Personal Calendar class.

To get to this point, students should have been exposed to the above mentioned prerequisites. This could be accomplished by the following:

Write a program to calculate the date of Easter given any year.
Note: calculating the date of Easter was one of the major mathematical problems of the Middle Ages. The arithmetic algorithm can be found at: http://aa.usno.navy.mil/faq/docs/easter.html and involves basic arithmetic components.

Students could write a for loop to generate the desired years to be displayed in the calendar by asking for a beginning year to an ending year, starting from 1583 (the first full year of the Gregorian Calendar). This text file could then be used to fill the array holding the years to be displayed in the combo box. (Special attention would need to be given to the beginning year.)

Teaching switch-case for input of numbers from short date format to print out long date format. User inputs: 1/1/2007

Output: You entered 1/1/2007, which is January 1, 2007.

Build on this to check if the date entered is a valid date. For example, 2/29/2008 is valid while 3/32/2008 is invalid. Students should be given a mixed list of valid and invalid dates and after reading in the list determine which are valid and which are invalid and display the totals (this is referred to as the ValidDate program (). To do this, students need to be familiar with the rules for determining leap year. There is a plethora of online algorithms for this and worth having the students research it for themselves. Note, just in case you are not familiar with this, a leap year provides the extra day in February, February 29th, if the year is evenly divisible by 400 or by 4 and not by 100. Thus, 2000 was a leap year (divisible by 400) while 2100 is not a leap year (since it is divisible by 4 and by 100). 2008 is a leap year because it is divisible by 4 (2008% 4 = = 0 is true).

Exercise(s) using the built in Java API’s Calendar, Date, GregorianCalendar Classes (http://java.sun.com/j2se/1.4.2/docs/api/java/util/GregorianCalendar.html). This will familiarize the students with Sun’s website and the online API JavaDocs. The students should be able to display information about today (short date format, long day format, day of week) and perhaps how many days until the next vacation. From there they should be able to do the same for any user- provided short date (this could include checking all user inputted dates for validity).

Multi-Dimensional Array Assignment: Create a 2 dimensional array to hold the notices for each day of the year. This would be a 12 by 31 array. Hard code pre-set holidays, and request information from the user: month, day, year, and event. After the user is done entering the events, the program should print the results, similar to:

January

1: New Year's Day

February

14: St. Valentine's Day

June

3: Jenny's Birthday

4: Mike D's Birthday

5: Tom's Birthday

July

4: Independence Day

.....

Even though Java’s API files can do the work for you, an exercise in the Doomsday Algorithm (also referred to as Zeller's congruence) would be very intriguing. Given any date in the specified range, the algorithm returns the appropriate day of the week for that day. The exercise is to input the date, checking for its validity, and displaying the day of the week based on the Doomsday Algorithm. The algorithm can be found at: http://encyclopedia.thefreedictionary.com/Calculating%20the%20day%20of%20the%20week or http://rudy.ca/doomsday.html and http://www.tbflearn.com/doomsday/doomsday-practice.html provides a sample application of it.

The above covers the familiarity with the mathematical aspects needed to create a personal calendar class.

What follows is a suggest set of exercises to build up the students’ skills in creating the GUI part of the Personal Calendar class.

GUI Exercise 1: the students are to create an elementary GUI program, such as converting degrees Fahrenheit to Celsius. (see Day 7, p. 252)

GUI Exercise 2: (based on “A Tic-Tac-Toe Board” from Day 6 – Shorter Exercises – see below) the students are to create a Tic-Tac-Toe GUI. To begin with they could have a board and allow for 1 player against a random computer choice.
A message should display to alert the user to the final status of the game (“Congratulations! You Won!”, “Sorry, You Lose.”, “You Tied!”).

The more advanced versions could include AI (artificial intelligence) on the computer’s part, an option to choose the number of people playing (1 player against the computer, or 2 players playing against each other). The total numbers of wins, loses, and ties could be recorded and displayed. Menus could be added, etc.

GUI Exercise 3:

“A Harder Calculator” from the Day 7 – Shorter Exercises (again, see below).

After completing the above exercises, the students will have a firm foundation to tackle creating their own personal calendar class.

From Day 6 Shorter Exercises:

2. A Tic-Tac-Toe Board

Create a TicTacToe frame containing an array of nine panels that should look like a Tic-Tac-Toe board with the squares of the board numbered 1 through 9. Add the panels to a frame using a grid layout manager. The class for a single panel should extend JPanel and have methods x() and o() which draw X’s and O’s respectively on the panel. reset() should erase whatever is in the panel. Test your frame and panel classes by allowing a user to choose “X” or “O”, and then type in an integer. The appropriate letter should appear in the appropriate square (panel) on the board. As before, input should be done in a DOS window.

From Day 7 Shorter Exercises:

2. A Simple Calculator

Write a program to simulate a very simple calculator. There should be two fields F1 and F2 for numerical input. There should be four buttons labeled +, -, * , and /. When a button B is pressed, then the operation (F1) B (F2) is computed and displayed on the screen. If a button is pressed and a field F1 or F2 is empty then an error message should appear. A quit button or menu choice ends the program.
3. A Harder Calculator

Create a basic version of a calculator similar to the one supplied with Windows:

[image: image1.jpg]
You need to include only the numerical buttons, the clear button and the equals button.

One More Calculator Feature - Optional

Add the MS (memory store), MC (memory clear), and MR (memory recall) buttons to your calculator.

PAGE
2

