

Lim Cheng Soon

Josh Nimoy
Kirill Zubovsky
Philip Kaplan
Jason Freedman
Jason Cohen
Kristof Kovacs
Peteris Krumins

Emily Griffin

MagCloud

HACKER MONTHLY is the print magazine version
of Hacker News — , a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit .

ads@hackermonthly.com

contact@hackermonthly.com

Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

edia and not affilia

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://excites.co.uk

ff
JOSH NIMOY

off
KIRILL ZUBOVSKY

PHILIP KAPLAN

JASON FREEDMAN

JASON COHEN

KRISTOF KOVACS

PETERIS KRUMINS

http://hackermonthly.com/issue-15.html

JOSH NIMOY

I SPENT A HALF year writing software art
to generate special effects for Tron
Legacy, working at Digital Domain
with Bradley “GMUNK” Munkowitz,

Jake Sargeant, and David “dlew” Lewandowski.
This page has taken a long time to be pub-
lished because I’ve had to await clearance. A
lot of my team’s work was done using Adobe
software and Cinema 4D. The rest of it got
written in C++ using OpenFrameworks and
wxWidgets, the way I’ve always done it with
this team. Uniquely, however, Digital Domain’s
CG artists were able to port my apps over
to Houdini for further evolution and better
rendering than OpenGL could ever provide.
Special thanks to Andy King for showing me
that what seasoned CG artists do at DD is
actually not so far off from what’s going on in
the Processing community.

ff

 In addition to visual effects, I was asked
to record myself using a Unix terminal doing
technologically feasible things. I took extra
care in babysitting the elements through to
final composite to ensure that the content
would not be artistically altered beyond that
feasibility. I take representing digital culture
in film very seriously in lieu of having grown
up in a world of very badly researched user
interface greeble. I cringed during the part
in Hackers (1995) when a screen saver with
extruded “equations” is used to signify that the
hacker has reached some sort of neural flow or
ambiguous destination. I cringed for Swordfish
and Jurassic Park as well. I cheered when Trin-
ity in The Matrix used nmap and ssh (and so
did you). Then I cringed again when I saw that
inevitably, Hollywood had decided that nmap

was the thing to use for all its hacker scenes
(see Bourne Ultimatum, Die Hard 4, Girl with
Dragon Tattoo, The Listening, 13: Game of
Death, Battle Royale, Broken Saints, and on
and on). In Tron, the hacker was not supposed
to be snooping around on a network; he was
supposed to kill a process. So we went with
posix kill and also had him pipe ps into grep. I
also ended up using emacs eshell to make the
terminal more l33t. The team was delighted
to see my emacs performance — splitting the
editor into nested panes and running different
modes. I was tickled that I got emacs into a
block buster movie. I actually do use emacs irl,
and although I do not subscribe to alt.religion.
emacs, I think that’s all incredibly relevant to
the world of Tron.

HexVirus is a spherical map of the globe
that features vector outlines of the continents.
These continent vectors are slowly eaten away
by a more hexagonal representation. Algorith-
mically, this is a path stepping function which
looks ahead for the closest matching 60-degree
turns. The HexVirus globe was used in the
executive board meeting scene, and also inside
the grid as a visual aid in CLU’s maniacal plan
presentation. In the board room interface, the
globe element is surrounded by the lovely
work of my team.

The scoreboard was the first element I
worked on. I created a line-generator that
produced bursts of lines which turned at
adjustable angles. The line generator had
“radial mode” which arranged the geometry in
concentric circle form. This line generator was
used to generate generic elements and layers
of style in different things, and is a GMUNK
favorite. At this point, I found myself moving
to multi-sampled FBOs because the non-
antialiased polygons were just too ugly to work
with, and we needed to make film-resolution
renders. In fact, this is the highest res I’ve ever
seen my apps render.

Fireworks, mmmm. I started with a regular
physics simulation where a particle has an
upward force applied at birth, sending it
upward while gravity pulls it back down
resulting in a parabola. I then added particle-
children, followed by various artistic styles,
including what our team has called “Egyptian”
across several jobs — which is a side-stepping
behavior. We were trying to create fireworks
that looked enough like real fireworks but
had interesting techno-aesthetic. As a homage
to the original Tron character Bit, we used
icosahedrons, dodecahedrons, and similar. I was
disappointed that Bit isn’t in this one. After
doing this simulation, I’ve grown more aware
of how often fireworks are used in movies.

For the portal climax, the Tron-
Lines app was used, but also apps
like “Twist” from our team’s previous
jobs. Once the look was mocked up
by GMUNK, a Houdini artist recre-
ated the rig for deeper control.

 I wrote a particle renderer that
could make the head holograms
slurp in and out of the data discs.
Special thanks to Keith Pasko for
CLUing me in about using expo-
nential functions to create a sliding-
gooey sort of delay.

When fixing Quorra, there was an element
in the DNA interface called the Quorra Heart
which looked like a lava lamp. I generated an
isosurface from a perlin-noise volume, using
the marching cubes function found in the Geo-
metric Tools WildMagic API, a truly wonderful
lib for coding biodigital jazz, among other
jazzes. The isosurface was then drawn along
different axes, including concentric spheres.
The app was mesmerizing to stare at.

After this project, I was fed up enough with
wxWidgets and Carbon that I was ready to
author my own OpenGL based UI. The most
important thing I could use was a floating-point
slider. I also got irritated with the way the
Carbon sliders would not slide all the way to
the minimum and maximum values. It totally
messed with my zen thing. Also, after a job like
this, it’s clear that a member of the Processing
community working within a CG community is
greatly restricted by the differences of real-time
graphics rendering engines, and that probably
messes with an art director’s zen thing.

http://hn.my/tron

 KIRILL ZUBOVSKY

off

JOHN IS THE owner of Canal Street Coffee.
He is sixty-six years old, and he spent
most of his life being an employee. After

years of working in blue collar jobs, John
finally opened this cafe 5 years ago. For the
first time in his life, he was at the top, and he
was learning on the fly. The business was doing
well until the recession came along. He had to
lay off a few staff and get behind the counter
himself. This is a story of how John turned his
problems into opportunities — and what you
should learn from his experience.

Life was going steady, until one day the credit
card processor raised its fees in the same
month that the computerized register crashed.
John had a decision to make: either go ahead
and buy a new computer and keep paying
credit card fees, all to spend more and more
money, or to drop credit and go cash-only. Just
like any good entrepreneur, he made a deci-
sion quickly and got rid of the extra overhead.

What do you know, all of a sudden there was
no computer to worry about nor were there
any feeds to the processor. That meant John
could sell less every month, and still remain
profitable.

For the first two months, the sales plummeted.
With a “cash only” sign on the door, custom-
ers would come up to the building, walk up
the stairs, get to the door, and then leave. “We
couldn’t have that! I needed to convert them,”
said John. Notice, he simply gets what needs to
be done.

To fix the conversion rates, John moved the
“cash only” sign inside, and on top of that , he
started accepting checks, foreign currency, and
even the IOUs. The latter was a big surprise.
Since he started this gimmick, the store
actually gained more loyal customers. People
haven’t been skipping on payments and have
always come back. Perhaps they actually like to
be trusted!

The store was
up and running,
the customers
were coming, the
economic situa-
tion was getting
better, but not
all was well at Canal St. Coffee. When it comes
to baked goods, every coffee shop operates at
a loss. John, too, used to order $70 worth of
baked goodies every day, but only sell about
half. One day the bakery raised their prices,
and that was the tipping point.

A coffee shop is expected to have baked
goods, and although John wasn’t sure what he
would do, he was not going to pay a cent more.
Shortly after, John started making home-made
banana bread; John’s gardener baked some
cookies. What do you know? The customers
ate it up, quite literally!

Although on a winning spree, John wasn’t
quite satisfied with the choices. Something else
was needed on the menu, and so one day he
drove by Fred Meyer and purchased a box of
donuts. His only employee was skeptical about
selling those ‘manufactured’ donuts, but they
tried anyway.

Believe it or not, the donuts were sold out. In
fact, locals started to come in just to get these
donuts, while of course also buying coffee, beer,
and whatever else was available. Nobody could
turn down 25-cent pastry! With the bread,
cookies, and donuts, John was now operating
with virtually no loss on the baked goods, and
managed to attract more stable customers.

I didn’t plan this
story, but after
listening to John
tell me about
his experiences,
I couldn’t help
it. The lessons
above apply to
any company:
big or small,
tech or not, the

concepts are the same. To apply them, you
don’t need to be a developer ninja, or a rocket
scientist, or a mad biz-dev guy. All you need
is some courage to try things out. Start by
making fast decisions, listen to your customers,
get them in the door, experiment, and, what-
ever happens, look on the bright side.

offeejohn

http://twitter.com/kirillzubovsky
http://hn.my/coffeejohn

PHILIP KAPLAN

THE MOST FREQUENTLY asked question I
get from new entrepreneurs is, “

”
Here’s most of what I know.

The best sites seem to take off magically by
themselves. Truth is, every site needs a little
kickstart to get to its first 10,000 to 100,000
users. Consider this a list of kickstarters. But
keep in mind the saying, “nothing kills a bad
product faster than good marketing.” You have
been warned.

In April, 2000, I launched
— a blog that chronicled the dot-com bust.
It had 5 million readers per month, a lot of
revenue, and I eventually sold it.

Marketing started when I joined a large
online community of web developers, not
unlike Hacker News. “

,” I wrote, with a link to my own
site. This started a heated debate about the
site. It seemed like hundreds were participating

— much love, some hate. I gracefully ducked
out of the conversation and watched 24,000
new registered users join that week. There’s a
line between contributing and spamming — I
think what I did was okay.

With , we also chose to go the
controversial route. Instead of telling people
“this is a good site to tell friends the restau-
rants you’re going to” (which Blippy can do),
we went with a more controversial message
along the lines of “broadcast your credit card
statements.” This resulted in a huge amount of
PR and attention (more on that in the “press”
section, below).

Keep in mind that your product doesn’t have
to be inherently controversial to stir contro-
versy. If you’re an electronic music artist, hang
out with a folk music crowd. They’ll hate you,
which is good. If there’s one new user for every
ten haters, I’ll take it.

Almost anything can be controversial. If
there’s nothing that can be controversial about
your product, it might be boring.

http://Fuckedcompany.com
http://Blippy.com

Address book importers, auto tweets, “send
this to 5 people and get special access,” etc. I’ve
never been a huge fan of this kind of thing, but
it’s popular.

One of my sites, Fast140 [fast140.com], sends
a tweet the first time you use it (with disclosure
that it’s gonna do that). Another one of my
sites, , has an address book importer
that lets you invite everyone you know to join.
Address book importers stopped being effective
around 2007, I should actually just get rid of it.

If you’re building Facebook apps or some-
thing using Facebook Connect or Twitter, these
kinds of tricks can still be effective, though the
window is closing on that.

ffilia
Pay people a commission to send you users.
This only works, obviously, if you’re running a
pay site.

One of my sites, , has an
affiliate program. It works a’ight. Running a
successful affiliate program is more work than
it seems. You can’t just put up an affiliate link
& wait. Instead, you need to find affiliates,
nurture them, run specials and promotions.
The best way to get an idea of how a well-run
affiliate program looks, is to join one like this
[hn.my/zappos] or this [hn.my/friendfinder].

It’s possible to find an affiliate manager who
will work for you for commission only.

)
The great thing about search engines is that
you don’t have to do anything — if you have
a good service or good content, Google will
generally make sure people find it.

SEO tweaks can increase these numbers.
But in the early days, SEO is generally a bad
way to spend your time; gains will likely be
insignificant.

My free email newsletter service, TinyLetter
[tinyletter.com], is on the first page of Google
search results for “free email newsletter”. That
generates a fair amount of business. All I had
to do was give the site a good <title> tag &
Google did the rest.

Press is one of the best ways to get users. The
easiest way to get an article written about you
is to tell a writer about a good story idea you
have. Don’t write a press release. Don’t hire a
PR firm.

Instead, think of a compelling story you
would like to read. Pick a writer who you like,
and who you think might want to write about
it. Tell them your story idea in 2-3 sentences.
Contact them via email. If you don’t know
their email address, guess. Also ping them on
Twitter and Facebook.

If the writer doesn’t respond, try a differ-
ent one. But only one at a time — they won’t
like you if you give the same story to their
competitor.

Also, don’t just pitch stories about your
company. Ingratiate yourself with writers by
selflessly giving them scoops and ideas for
stories unrelated to you. Karma.

Bad story idea: “I just launched a thing and
you should write about it.”

Good story idea: “Facebook fucked something
up. Oh and it happens to relate to my thing.”

Good story idea: “I just raised $20 million to
launch a thing.”

Good story idea: “My competitor raised $20
million, yet my thing is better.”

Good story idea: “My competitor’s thing is
unsafe and could possibly kill you.”

Good story idea: “I’m not sure if my thing is
legal.”

http://fast140.com
http://Mobog.com
http://HitMeLater.com
http://hn.my/zappos
http://hn.my/friendfinder
http://tinyletter.com

Ask someone famous (real-famous or internet-
famous) to use your site. Have them tweet
about it or make a YouTube video.

Get in touch with them through their
manager, PR firm, lawyer (a little googling goes
a long way), Facebook, Twitter, MySpace page
(still effective), whois info, and so on.

Consider offering them some combination of
nothing, money, and/or equity.

Get a bigger company to promote you. At
Blippy, we got Sephora to promote us on their
Facebook page to 1M+ fans for free, because
we did a special Sephora thing on our site.

BillShrink got T-Mobile to say “if you don’t
believe that we’re the cheapest, go check
BillShrink.com, an independent third party.”

Think of something cool you’d like to do
with a bigger company and contact someone
who works there on LinkedIn, or Facebook via
BranchOut [branchout.com], which is actually
better and freer for this (disclaimer: I’m an
investor in BranchOut).

ffline e
Throwing parties is grueling, but has helped
launch a small number of companies
successfully.

Offline events work best when your product
has strong ties to the real world. Evite got
started by throwing big parties around the
country, with the catch that you had to RSVP
using Evite. Yelp did something similar.

The majority of launch parties (and SXSW
events) are not effective for getting new users.

Read about Twitter’s famous flat panel displays
at SXSW [hn.my/sxsw].

I know a company that promoted a game
called “Shrooms” by passing out bags of
(innocuous) mushrooms at a gamer conference,
almost getting arrested.

Richard Branson drove a tank through Times
Square to promote Virgin Cola in front of a
giant Coke billboard (actually not sure if that
worked). Hugh Hefner bought a mansion in
LA and invited celebrities to hang out with
naked people.

Groupon does a boatload of ROI-positive
online advertising (okay, not that creative but
it works). YouTube let you embed semi-illegal
content into MySpace pages. Facebook and
Digg made widgets that got thousands of sites
pointing back to them.

onclusion
I hope you enjoyed this list of ways to promote
your website. One final tip: As entrepreneurs,
we obsess over our products. Try to forget
about your product for a couple of weeks, and
instead obsess over how to promote it.

http://branchout.com
http://hn.my/sxsw
http://hn.my/users

http://hacker.postmarkapp.com
http://hn.my/users

JASON FREEDMAN

WHEN WE WERE raising money
for FlightCaster in the fall of
2009, we met with dozens of

investors, both VCs and Angels. Most of them
turned us down. The investors that did put
money into FlightCaster provided us with a
ton of value, both in terms of their capital and
all the support/guidance/networking.

And what about all those investors that
had turned us down? They actually ended
up providing a lot of value as well, and that’s
what this article is about. I had noticed a funny
trend from each one that had turned us down.
They all closed with a variant of this statement:

At first, it sounded like a standard pleasantry,
in the same vein of “I wish you the best of
luck.” But then, I started thinking about why it
was that every investor was saying it. I realized
that there are two forces at work here:

The first is that many investors are genuinely

fiduciary duty to their limited partners

So, back to our story. I decided to take
them up on their offer. All of them. I literally
contacted every investor that turned us down
and asked for a concrete favor.

We had just launched the FlightCaster prod-
uct and were working hard to meet people
in the industry. My co-founder Evan Kon-
wiser was not yet recognized as the thought
leader of the travel industry that he is today.
We had a big conference coming up where
every leader of the travel industry would be in
attendance. And we knew no one.

With a few hours on LinkedIn, I was able to
see which investors knew someone that knew
someone we wanted to meet. I sent a personal-
ized version of this email to all those investors
that offered to help:

And you know what happened? A huge
number of those investors responded within
48 hours, and most of them were able to help
in some way. And it was the most impressive
investors that responded the quickest. Here’s
the response I received from Ron Conway the
next day (using his classic all caps):

So, yes, we got introduced to the CEO of
Expedia because Ron Conway, who had previ-
ously passed on investing in us, was willing to
help. Booyah!! Why did he do it? Because Ron
Conway is also one of those guys that is funda-
mentally rooting for the entrepreneur.

The other reason he did it? Because we
asked. You don’t get shit you don’t ask for.

This is a common Paul Graham state-
ment to YC companies. Figure out exactly
what you need and just ask for it. Don’t play
games, don’t posture, don’t hint. Just ask for
what you want.

We didn’t ask for general advice. We did our
homework and made very specific requests. It’s
much easier for people to respond to concrete
requests. Even if they can’t provide for that
direct request, the specificity of the request
helps them find an alternative way to help.

I only wanted to ask these incredibly busy
investors for help once or maybe twice.
Obtaining industry introductions was one of
the most important necessities of our startup. I
made sure to ask for something that they could
provide with minimal effort and risk.

We’re all part of the same innovation com-
munity. This whole entrepreneurship thing is
hard for everyone, but fortunately, everyone
has something to offer. Don’t procrastinate on
giving back.

Investors love knowing the outcome. For both
personal and professional reasons, they’re
interested in long term relationships. Do your
part by keeping them up to date with your
successes. I like to email everyone that helped
me immediately prior to something showing
up on Techcrunch. It helps me communicate
to them that I appreciate everything they did
to be a part of our success.

Give it a shot. The worst that can happen is
that they say no. And even that’s not so bad —
investors love knowing that you hustle.
So hustle.

fi

http://humbledMBA.com
http://twitter.com/jasonfreedman
http://hn.my/ask

http://cloudkick.com
http://hn.my/ask

JASON COHEN

EVERYONE SAYS SMALL startups require
focus. Say “no” to anything that
distracts from your goal, your vision,

your strategy, tempting though it is to explore
all opportunities, hoping each time that this is
the one that will catapult you from Mixergy
listener to Mixergy interviewee.

Lack of focus results in half-assed initia-
tives, each interrupted by apparently greener
pastures before you’ve invested the time and
devotion it deserves. Learn to say “no!”

Ah, but then again you must also experi-
ment with new ideas. Fail fast! Pivot! Test!
Doubt! Always be collecting evidence that
you’re wrong, always be trying new things
in case you’ve been blind. Never pass up an
opportunity to change, learn, grow.

So…how are you supposed to explore other
ideas if you’re also supposed to be saying “no”
to anything that diverges from The Plan?

Here’s what I do: I never say “no.” But I care-
fully qualify “yes.”

I learned this trick while still in high school.
In the mid 90s, it was clear that Apple had
lost the personal computer battle, and all their
developers were fleeing like rats off a sinking
ship into the ocean of opportunity that was
Windows 95. As a maven of the Macintosh
API and still willing to admit it, I landed lots of
small contracting jobs fixing up code that other
developers wouldn’t touch.

My typical rate was $25 per hour, which
when you’re 17 seems like a lot of money.

One day I got a call from some poor schleps
I didn’t want to help. They had just completed
a new product written in Java and it was
broken on a Mac, and could I help? None of
their customers used Macs, so they didn’t think
Macs were important. But then it turns out the
main investor is keen on seeing the demo on
a Mac, and when they tried it, it didn’t work.
(Yay investors!)

I wanted no part of this. Java was new and
known to be full of bugs, and anyway I was a
C/C++ kind of guy, and I didn’t want to get
involved in an academic fad language like
Java. (So yeah, I simultaneously decided that
(1) Java is a fad and (2) I’m sticking with the
Macintosh Toolkit; five years later one those
platforms had zero developers and the other
had one million, and I picked exactly wrong.)

I could have said “no.” Given my specialty
and my goals, traditional career (or startup)
theory says I should have said “no.”

But instead, on the advice of an older, wiser
friend, I showed up at their office and said I’d
do it for $100 per hour.

I fully expected them to laugh in my face.
Maybe I would receive a condescending
talking-to about the audacity — nay, the
impudence! — of someone of my age and
experience walking in here and demanding
such outrageous compensation, someone who,
let’s be clear, is technically too young to even
enter into a legal consulting agreement in the
first place.

And then I would have slinked out of there
embarrassed, but ultimately no worse for wear.

But that’s not what happened. They looked
me up and down, their faces revealing both
incredulity and surrender. They said OK. An
hour and a half later, everything was working.
The difference between saying “no” and getting
$150 for about two hours of my life was all in
how I phrased “yes.”

And I have stories that went the other way,
which are just as important.

At WPEngine [wpengine.com], for example,
we’re constantly talking to large bloggers who
want to move to our system. These are folks
with big requirements — tens of millions of
monthly page-views, traffic spikes, custom
code, perfect up-time, and 24/7 support.

Should we take on those clients? Maybe
not — after all, the stated goal of WPEngine is
to serve the “middle market” — the folks who
have outgrown free blogs, don’t like maintain-
ing their own servers, but aren’t so large that
they have extreme hosting demands. That’s our
profitable niche.

So we think. But if we just say “no” to these
big bloggers, maybe we’re closing the door
on big, important orders. Perhaps the entire
company should pivot — maybe it’s easier or
more profitable to serve 100 large blogs than
1000 medium ones. But how do we know if
we say “no?”

Then again, if we say “yes” we might really
be screwed. If we can’t provide them the
human and technical service they expect, now
we’ve hurt a blogger, we get bad press, and
we’ve wasted a bunch of time. Or even worse,
we hold on for dear life but it’s extremely
unprofitable, and now we have this expensive,
time-consuming albatross around our necks.

So we’ve said “yes” by quoting high enough
that we know for certain we will make good
money on the deal, so much so that it will
partially fund something else we want to
do. Maybe that means a big new advertising
campaign, or hiring another WordPress expert
for our staff.

There was one especially large customer
where we literally thought of it like this: this
deal needs to be big enough to not only make
a reasonable profit on the operating expenses,
but to pay for an entire developer’s salary
(assuming bootstrapped, put-in-elbow-grease-
for-stock low salary), because we know this
new customer will occupy a lot of that per-
son’s time, but all the remaining time we get
“for free.”

So we’ve given a lot of qualified yeses, and
many were rejected.

http://wpengine.com

At Smart Bear [smartbear.com] I used this
principle yet again. Companies would fly
me out to help them implement a peer code
review process, which half the time actually
meant that “management” wanted me to
convince everyone else that code review was
a good idea, and invent a process painless
enough they might actually do it.

From a business perspective, this was a poor
use of my time. These folks had already bought
our software, so it didn’t sell more seats. When
you counted a travel day on either side of the
engagement, the time I lost could easily have
been spent landing just one additional cus-
tomer or make some important changes to the
code, either of which almost certainly makes us
more money.

Therefore, initially I just said “no.” But of
course that’s wrong. Eventually I said “yes,”
but the price was $2500/day including travel
days, which for these sorts of engagements is
unheard of. (Typically you get reimbursed for
travel expenses but not paid for that time.)

This immediately cut out most trips, but
some remained. Of course on those trips I’d
haul in $10,000 for a week of easy work,
which I’d often combine with a long weekend
with my wife. And anyway those people really
wanted me there, which made the work that
much more enjoyable.

So the principle is easy: Set the conditions of
“yes” such that:

If they say “yes,” you’re happy, because the
terms or money are so good it more than
compensates for the distraction, possibly
even funding the thing you really want to do.

If they say “no,” you’re happy, because it
wasn’t a great fit anyway, so it’s not worth-
while for a small return on your time and
effort.

So that’s the punch-line, but before you go
I’d like to over-emphasize the idea of “funding
the thing you really want to do.”

This can take many forms, but it’s the single
best way of figuring out how to qualify your
“yes.” Examples:

“Yes” if it pays for an entire additional
person.

“Yes” if this extends the runway of our
startup by at least three months.

“Yes” if it completely funds development
we’d like to do anyway.

“Yes” if it means one of the co-founders can
quit her day-job.

“Yes” if it will completely pay for three new
marketing efforts.

Think of it like another form of funding.
Funding is always a distraction from actually
running your business, so the amount of money
you get must be transformative to the business.
Each of those bullet points is transformative,
in that each has the potential to move your
company from “hobby” to “real business.”

And if they say “no,” you’re fine with that,
because it would have been a distraction which
wouldn’t have moved the needle.

ofitable

http://smartbear.com
http://blog.ASmartBear.com
http://hn.my/sayyes

http://hn.my/sayyes

KRISTOF KOVACS

iostat, vmstat, ifstat and much
more in one.

Visualizes network interface
traffic over time.

The real programmers’ editors.

JUST A LIST of 28 tools for the command line. Some are little-known, some are just too
useful to miss, some are purely obscure. I hope you find something useful that you weren’t
aware of yet! Use your operating system’s package manager to install most of them.

Keep your terminal sessions
alive.

See your log files in separate
windows.

Presentation (“PowerPoint”)
tool for terminal.

Executes tasks from input
(even multithread).

Encrypting backup tools.

Still the most complex game
on the planet.

Does FTPS. Can mirror, kind
of like rsync.

A better grep for source code.

Calendar systems.

Command line RSS readers.

Helps conserve power on
Linux.

Process, memory, and io
monitoring.

Record and play back terminal
sessions.

Keeps filesystems in sync over
SSH.

traceroute 2.0.

Directing stuff easily in and
out of sockets.

To see where your traffic goes.

Command line load test tools.

Terminal-based accounting
package.

Todo management in the
terminal.

Everybody’s favorite HTTP
toolbox.

Command line torrent
downloaders.

Nice trendy Twitter clients.

Alternatives to the midnight
commander.

I just couldn’t resist. :o)

http://kkovacs.eu
http://hn.my/unix

PETERIS KRUMINS

I DECIDED TO WRITE an article about a thing
that is second nature to embedded sys-
tems programmers: low level bit hacks.

Bit hacks are ingenious little programming
tricks that manipulate integers in a smart and
efficient manner. Instead of performing some
operation (such as counting the 1 bits in an
integer) by looping over individual bits, these
programming nuggets do the same with one or
two carefully chosen bitwise operations.

To get things going I’ll assume that you
know what the two’s complement binary
representation of an integer is and also that
you know all the bitwise operations.

I’ll use the following notation for bitwise
operations in the article:

& - bitwise and
| - bitwise or
^ - bitwise xor
~ - bitwise not
<< - bitwise shift left
>> - bitwise shift right

The numbers in the article are 8 bit signed
integers (though the operations work on
arbitrary length signed integers) that are
represented as two’s complement and they are
usually named “x”. The result is usually “y”. The
individual bits of “x” are named b7, b6, b5, b4,
b3, b3, b2, b1 and b0. The bit b7 is the sign bit
(the most significant bit), and b0 is the least
significant.

I’ll start with the most basic bit hacks and
gradually progress to more difficult ones. I’ll
use examples to explain how each bithack
works.

Here we go.

if ((x & 1) == 0) {
 x is even
}
else {
 x is odd
}

I am pretty sure everyone has seen this trick.
The idea here is that an integer is odd if and
only if the least significant bit b0 is 1. It follows
from the binary representation of “x,” where
bit b0 contributes to either 1 or 0. By AND-ing
“x” with 1, we eliminate all the other bits than
b0. If the result after this operation is 0, then
“x” was even, because bit b0 was 0. Otherwise
“x” was odd.

Let’s look at some examples. Let’s take inte-
ger 43, which is odd. In binary 43 is 00101011.
Notice that the least significant bit b0 is 1 (in
bold). Now let’s AND it with 1:

 00101011
& 00000001

 00000001

See how AND-ing erased all the higher
order bits b1-b7 but left bit b0 the same as it
was? The result is thus 1, which tells us that
the integer was odd.

Now let’s look at -43. Just as a reminder, a
quick way to find negative of a given number
in two’s complement representation is to
invert all bits and add one. So -43 is 11010101
in binary. Again notice that the last bit is 1, and
the integer is odd. (Note that if we used one’s
complement it wouldn’t be true!)

Now let’s take a look at an even integer 98.
In binary 98 is 1100010.

 01100010
& 00000001

 00000000

After AND-ing, the result is 0. It means that
the bit b0 of the original integer 98 was 0.
Thus the given integer is even.

Now the negative -98. It’s 10011110. Again,
bit b0 is 0, after AND-ing, the result is 0,
meaning -98 is even, which indeed is true.

if (x & (1<<n)) {
 n-th bit is set
}
else {
 n-th bit is not set
}

In the previous bit hack we saw that (x &
1) tests if the first bit is set. This bit hack
improves this result and tests if the n-th bit
is set. It does this by shifting that first 1-bit n
positions to the left and then doing the same
AND operation, which eliminates all bits but
n-th.

Here is what happens if you shift 1 several
positions to the left:

1 00000001 (same as 1<<0)
1<<1 00000010
1<<2 00000100
1<<3 00001000
1<<4 00010000
1<<5 00100000
1<<6 01000000
1<<7 10000000

Now, if we AND “x” with 1 shifted n posi-
tions to the left, we effectively eliminate all the
bits except the n-th bit in “x”. If the result after
AND-ing is 0, then that bit must have been 0,
otherwise that bit was set.

Let’s look at some examples.
Does 122 have 3rd bit set? The operation we

do to find it out is:

122 & (1<<3)

Now, 122 is 01111010 in binary. And
(1<<3) is 00001000.

 01111010
& 00001000

 00001000

We see that the result is not 0, so yes, 122
has the 3rd bit set.

What about -33? Does it have the 5th bit
set?

 11011111 (-33 in binary)
& 00100000 (1<<5)

 00000000

Result is 0, so the 5th bit is not set.

y = x | (1<<n)

This bit hack combines the same (1<<n) trick
of setting n-th bit by shifting with OR opera-
tion. The result of OR-ing a variable with a
value that has n-th bit set is turning that n-th
bit on. It’s because OR-ing any value with 0
leaves the value the same; but OR-ing it with
1 changes it to 1 (if it wasn’t already). Let’s see
how that works in action:

Suppose we have value 120, and we wish to
turn on the 2nd bit.

 01111000 (120 in binary)
| 00000100 (1<<2)

 01111100

What about -120 and 6th bit?

 10001000 (-120 in binary)
| 01000000 (1<<6)

 11001000

y = x & ~(1<<n)

The important part of this bithack is the
~(1<<n) trick. It turns on all the bits except
n-th.

Here is how it looks:

~1 11111110 (same as ~(1<<0))
~(1<<1) 11111101
~(1<<2) 11111011
~(1<<3) 11110111
~(1<<4) 11101111
~(1<<5) 11011111
~(1<<6) 10111111
~(1<<7) 01111111

The effect of AND-ing variable “x” with this
quantity is eliminating n-th bit. It does not
matter if the n-th bit was 0 or 1, AND-ing it
with 0 sets it to 0.

Here is an example. Let’s unset 4th bit in
127:

 01111111 (127 in binary)
& 11101111 (~(1<<4))

 01101111

y = x ^ (1<<n)

This bit hack also uses the wonderful “set
n-th bit shift hack” but this time it XOR’s it
with the variable “x.” The result of XOR-ing
something with something else is that if both
bits are the same, the result is 0, otherwise it’s
1. How does it toggle n-th bit? Well, if n-th bit
was 1, then XOR-ing it with 1 changes it to 0;
conversely, if it was 0, then XOR-ing with 1
changes it to 1. See, the bit got flipped.

Here is an example. Suppose you want to
toggle 5th bit in value 01110101:

 01110101
^ 00100000

 01010101

What about the same value but 5th bit
originally 0?

 01010101
^ 00100000

 01110101

Notice something? XOR-ing the same bit
twice returned it to the same value. This nifty
XOR property is used in calculating parity in
RAID arrays and used in simple cryptography
cyphers, but more about that in some other
article.

urn off the righ

y = x & (x-1)

Now it finally gets more interesting! Bit hacks
#1 - #5 were kind of boring, to be honest.

This bit hack turns off the rightmost 1-bit.
For example, given an integer 00101010
(the rightmost 1-bit in bold) it turns it into
00101000. Or given 00010000, it turns it into
0, as there is just a single 1-bit.

Here are more examples:

 01010111 (x)
& 01010110 (x-1)

 01010110

 01011000 (x)
& 01010111 (x-1)

 01010000

 10000000 (x = -128)

 00000000

 11111111 (x = all bits 1)
& 11111110 (x-1)

 11111110

 00000000 (x = no rightmost 1-bits)
& 11111111 (x-1)

 00000000

Why does it work?
If you look at the examples and think for a

while, you’ll realize that there are two possible
scenarios:

1. The value has the rightmost 1-bit. In this
case subtracting one from it sets all the
lower bits to 1 and changes that rightmost
bit to 0 (so that if you add 1 now, you
get the original value back). This step has
masked out the rightmost 1-bit and now
AND-ing it with the original value zeroes
that rightmost 1-bit out.

2. The value has no rightmost 1 bit (all 0). In
this case subtracting 1 underflows the value
(as it’s signed) and sets all bits to 1. AND-ing
all zeroes with all ones produces 0.

y = x & (-x)

This bit hack finds the rightmost 1-bit and
sets all the other bits to 0. The end result has
only that one rightmost 1-bit set. For example,
01010100 (rightmost bit in bold) gets turned
into 00000100.

Here are some more examples:

 10111100 (x)
& 01000100 (-x)

 00000100

 01110000 (x)
& 10010000 (-x)

 00010000

 00000001 (x)
& 11111111 (-x)

 00000001

 10000000 (x = -128)
& 10000000 (-x = -128)

 10000000

 11111111 (x = all bits one)
& 00000001 (-x)

 00000001

 00000000 (x = all bits 0,
 no rightmost 1-bit)
& 00000000 (-x)

 00000000

This bit hack works because of two’s
complement. In two’s complement system -x is
the same as ~x+1. Now let’s examine the two
possible cases:

1. There is a rightmost 1-bit bi. In this case let’s
pivot on this bit and divide all other bits into
two flanks: bits to the right and bits to the
left. Remember that all the bits to the right
bi-1, bi-2 ... b0 are 0’s (because bi was the
rightmost 1-bit). And bits to the left are the
way they are. Let’s call them bi+1, ..., bn.
 Now, when we calculate -x, we first do ~x
which turns bit bi into 0, bits bi-1 ... b0 into
1s, and inverts bits bi+1, ..., bn, and then we
add 1 to this result.
 Since bits bi-1 ... b0 are all 1’s, adding one
makes them carry this one all the way to bit
bi, which is the first 0-bit.
 If we put it all together, the result of calcu-
lating -x is that bits bi+1, ..., bn get inverted,
bit bi stays the same, and bits bi-1, ..., b0 are
all 0’s.
 Now, AND-ing x with -x makes bits bi+1,
..., bn all 0, leaves bit bi as is, and sets bits
bi-1, ..., b0 to 0. Only one bit is left, it’s the
bit bi - the rightmost 1-bit.

2. There is no rightmost 1-bit. The value is 0.
The negative of 0 in two’s complement is
also 0. 0&0 = 0. No bits get turned on.

We have proved rigorously that this bithack
is correct.

y = x | (x-1)

This is best understood by an example. Given
a value 01010000 it turns it into 01011111.
All the 0-bits right to the rightmost 1-bit got
turned into ones.

This is not a clean hack, tho, as it produces
all 1’s if x = 0.

Let’s look at more examples:

 10111100 (x)
| 10111011 (x-1)

 10111111

 01110111 (x)
| 01110110 (x-1)

 01110111

 00000001 (x)
| 00000000 (x-1)

 00000001

 10000000 (x = -128)
| 01111111 (x-1 = 127)

 11111111

 11111111 (x = -1)
| 11111110 (x-1 = -2)

 11111111

 00000000 (x)
| 11111111 (x-1)

 11111111

Let’s prove it, though not as rigorously as in
the previous bithack (as it’s too time consum-
ing and this is not a scientific publication).
There are two cases again. Let’s start with
easiest first.

1. There is no rightmost 1-bit. In that case x =
0 and x-1 is -1. -1 in two’s complement is
11111111. OR-ing 0 with 11111111 pro-
duces the same 11111111. (Not the desired
result, but that’s the way it is.)

2. There is the rightmost 1-bit bi. Let’s divide
all the bits in two groups again (like in the
previous example). Calculating x-1 modifies
only bits to the right, turning bi into 0, and
all the lower bits to 1’s. Now OR-ing x with
x-1 leaves all the higher bits (to the left)
the same, leaves bit bi as it was 1, and since
lower bits are all low 1’s it also turns them
on. The result is that the rightmost 1-bit got
propagated to lower order bits.

	

y = ~x & (x+1)

This bithack does the opposite of #7. It finds
the rightmost 0-bit, turns off all bits, and
sets this bit to1 in the result. For example, it
finds the 0 in bold in this number 10101011,
producing 00000100.

More examples:

 10111100 (x)

 01000011 (~x)
& 10111101 (x+1)

 00000001

 01110111 (x)

 10001000 (~x)
& 01111000 (x+1)

 00001000

 00000001 (x)

 11111110 (~x)
& 00000010 (x+1)

 00000010

 10000000 (x = -128)

 01111111 (~x)
& 10000001 (x+1)

 00000001

 11111111 (x = no rightmost 0-bit)

 00000000 (~x)
& 00000000 (x+1)

 00000000

 00000000 (x)

 11111111 (~x)
& 00000001 (x+1)

 00000001

Proof: Suppose there is a rightmost 0-bit.
Then ~x turns this rightmost 0 bit into 1 bit.
And so does x+1 (because bits more right to
the rightmost 0 bit are 1’s). Now AND-ing
~x with x+1 evaporates all the bits up to this
rightmost 0 bit. This is the highest order bit set
in the result. Now what about lower order bits
to the right of rightmost 0 bit? They also got
evaporated because x+1 turned them into 0’s
(they were 1’s) and ~x turned them into 0’s.
They got AND-ed with 0 and evaporated.

y = x | (x+1)

This hack changes the rightmost 0-bit into
1. For example, given an integer 10100011 it
turns it into 10100111.

More examples:

 10111100 (x)
| 10111101 (x+1)

 10111101

 01110111 (x)
| 01111000 (x+1)

 01111111

 00000001 (x)
| 00000010 (x+1)

 00000011

 10000000 (x = -128)
| 10000001 (x+1)

 10000001

 11111111 (x = no rightmost 0-bit)
| 00000000 (x+1)

 11111111

 00000000 (x)
| 00000001 (x+1)

 00000001

Here is the proof as a bunch of true state-
ments. OR-ing x with x+1 does not lose
any information. Adding 1 to x fills the first
rightmost 0. The result is max{x, x+1}. If x+1
overflows it’s x and there were no 0 bits. If it
doesn’t, it’s x+1, which just got rightmost bit
filled with 1.

onus stuff
If you decide to play more with these hacks,
here are a few utility functions to print binary
values of 8 bit signed integers in Perl, Python
and C.

Print binary representation in Perl:

sub int_to_bin {

 my $num = shift;
 print unpack "B8", pack "c", $num;
}

Or you can print it from command line right
away:

perl -wle 'print unpack "B8", pack "c",
shift' <integer>

For example:
perl -wle 'print unpack "B8", pack "c",
shift' 113
01110001

perl -wle 'print unpack "B8", pack "c",
shift' -- -128
10000000

Print binary number in Python:

def int_to_bin(num, bits=8):
 r = ''
 while bits:
 r = ('1' if num&1 else '0') + r
 bits = bits - 1
 num = num >> 1
 print r

Print binary representation in C:

void int_to_bin(int num) {
 char str[9] = {0};
 int i;
 for (i=7; i>=0; i--) {
 str[i] = (num&1)?'1':'0';
 num >>= 1;
 }
 printf("%s\n", str);
}

Have fun with these!

http://stackvm.com
http://hn.my/bithacks

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Contents
	FEATURES
	Tron Legacy: How the Special Effects Were Done

	STARTUPS
	3 Lessons From a Coffee Entrepreneur
	Getting Users For Your New Startup
	You Don’t Get Shit You Don’t Ask For
	Never Say “No,”
But Rarely Say “Yes”

	PROGRAMMING
	A Collection of Cool,
but Obscure Unix Tools
	Low Level Bit Hacks You Absolutely Must Know

